If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-16x+17=0
a = 3; b = -16; c = +17;
Δ = b2-4ac
Δ = -162-4·3·17
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{13}}{2*3}=\frac{16-2\sqrt{13}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{13}}{2*3}=\frac{16+2\sqrt{13}}{6} $
| 4n+72n=1 | | 10x+5=14x | | 0.6(x)=100 | | 0.8y+1.9=5.5-0.4 | | 7x=2.2*5 | | 6t-1=36 | | 6t-16=36 | | 11+x=x+5 | | v+9/0=0 | | 13+m/3=10 | | 2(x−3)−5=5 | | x^2-22x+228=0 | | 2(h−3)−5=5 | | (x+3)^1/2+4=x+1 | | -8(u-3)-14=-86 | | 5^x-4=20 | | -26+6x=7(4x-9) | | X+3=10x-17 | | 8-10x=-58 | | Q(x)=3x2-15x+18 | | 4+12r=113 | | 8-10x=-5 | | 2(x-9)-14=-16 | | 8x+1=-6+9x | | 19+1.50d=14+2.75d | | 6p^2+4=-5p | | -2(x-8)+10=16 | | 7x+18=3x+35 | | 2(x-8)+10=16 | | 12/5x-18= | | 12/5x-18=62/93= | | 12/5x-18=62/93 |